Abstract

A new type of sandwich electrochemiluminescence (ECL) immunosensor dependent on ECL resonance energy transfer (ECL-RET) to achieve sensitive detection of procalcitonin (PCT) has been designed. In brief, carbon nanotubes (CNT) and Au-nanoparticles-functionalized graphitic carbon nitride (g-C3N4-CNT@Au) and CuO nanospheres covered with polydopamine (PDA) layer (CuO@PDA) were synthesized and applied as ECL donor and receptor, respectively. g-C3N4-CNT nanomaterials were in situ prepared on the basis of π-π conjugation, and the CNT content in the composite were optimized to achieve a strong and stable ECL signal. At the same time, Au nanoparticles were used to functionalize g-C3N4-CNT to further increase the ECL intensity and the loading amount of primary antibody (Ab1). Moreover, CuO@PDA was first used to successfully quench the ECL signal of g-C3N4-CNT@Au. Under the optimum experimental conditions, the linear detection range for PCT concentration was within 0.0001-10 ng mL-1 and the detection limit was 25.7 fg mL-1 (S/N = 3). Considering prominent specificity, reproducibility, and stability, the prepared immunosensor was used to assess recovery rate of PCT in human serum according to the standard addition method and the result was satisfactory. In addition, it is worth mentioning that a novel ECL-RET pair of g-C3N4-CNT@Au (donor)/CuO@PDA (acceptor) was first developed, which offered an effective analytical tool for sensitive detection of biomarkers in early disease diagnostics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.