Abstract

Quantum dynamics of superelastic collisions involving vibrational levels of MgH + (X1Σ + ) ions in cold traps, interacting with 4He(1S) as a buffer gas at relative temperatures down to millikelvins, is discussed using an ab initio computed potential energy surface. The relative efficiency of collisional cooling with respect to collisional quenching of the internal vibrations is examined from the results of the relative sizes of the relevant cross sections in relation to predicting actual behaviour in cold traps. The present study indicates the feasibility of cooling vibrationally ‘hot’, trapped ions with the buffer gas. The quenching process of the MgH+ vibrational energy induced by collisions with He has been characterized by extensive ab initio quantum calculations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.