Abstract

We propose a mechanism for the quenching of the Shubnikov-de Haas oscillations and the quantum Hall effect observed in epitaxial graphene. Experimental data show that the scattering time of the conduction electron is magnetic field dependent and of the order of the cyclotron orbit period, i.e., it can be much smaller than the zero field scattering time. Our scenario involves the extraordinary graphene n=0 Landau level of the uncharged layers which is pinned at the Fermi level. We find that the coupling between this n=0 Landau level and the conducting states of the doped plane leads to a scattering mechanism having the right magnitude to explain the experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.