Abstract

To study the quenching of single-particle strengths of carbon isotopes, a systematic analysis is performed for 9-12,14-20C, with single neutron knockout reactions on Be/C targets, within an energy range from approximately 43 to 2100 MeV/nucleon, using the Glauber model. Incident energies do not show any obvious effect on the resulting values across this wide energy range. The extracted quenching factors are found to be strongly dependent on the proton-neutron asymmetry, which is consistent with the recent analysis of knockout reactions but is inconsistent with the systematics of transfer and quasi-free knockout reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.