Abstract

The coupled dynamics of two similar and disparate electrochemical cells oscillators are analyzed. For the similar case, the cells are intentionally operated at different system parameters such that they exhibit distinct oscillatory dynamics ranging from periodic to chaotic. It is observed that when such systems are subjected to an attenuated coupling, implemented bidirectionally, they undergo a mutual quenching of oscillations. The same holds true for the configuration wherein two entirely different electrochemical cells are coupled via bidirectional attenuated coupling. Therefore, the attenuated coupling protocol seems to be universally efficient in achieving oscillation suppression in coupled oscillators (similar or heterogeneous oscillators). The experimental observations were verified by numerical simulations using appropriate electrodissolution model systems. Our results indicate that quenching of oscillations via attenuated coupling is robust and therefore could be ubiquitous in coupled systems with a large spatial separation prone to transmission losses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call