Abstract

Using molecular dynamics simulations, we investigate the self-assembly of a coarse-grained binary system of oppositely charged microgels, symmetric in size and concentration. The microgel pair interactions are described by an effective pair potential which implicitly accounts for the averaged ionic contributions, in addition to a short-range elastic repulsion that accounts for the overlapping of the polymer chains, the latter being described by the Hertzian interaction. Particular emphasis is placed on the role played by the strength of the soft repulsive interaction on the resulting particle aggregation. It is found that the possibility of particle inter-penetration in oppositely charged soft particles results in a much wider variety of cluster morphologies in comparison with their hard-spheres counterparts. Specifically, the softness of the steric interactions enhances the competition between repulsive and attractive electrostatic interactions, leading to the formation of aggregates that are comprised of strongly bounded charged particles displaying a low degree of charge ordering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.