Abstract

Quorum sensing (QS) is the ability of bacteria to monitor their population density and adjust gene expression accordingly. QS-regulated processes include host–microbe interactions, horizontal gene transfer, and multicellular behaviours (such as the growth and development of biofilm). The creation, transfer, and perception of bacterial chemicals known as autoinducers or QS signals are necessary for QS signalling (e.g. N-acylhomoserine lactones). Quorum quenching (QQ), another name for the disruption of QS signalling, comprises a wide range of events and mechanisms that are described and analysed in this study. In order to better comprehend the targets of the QQ phenomena that organisms have naturally developed and are currently being actively researched from practical perspectives, we first surveyed the diversity of QS-signals and QS-associated responses. Next, the mechanisms, molecular players, and targets related to QS interference are discussed, with a focus on natural QQ enzymes and compounds that function as QS inhibitors. To illustrate the processes and biological functions of QS inhibition in microbe–microbe and host–microbe interactions, a few QQ paradigms are described in detail. Finally, certain QQ techniques are offered as potential instruments in a variety of industries, including agriculture, medical, aquaculture, crop production, and anti-biofouling areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.