Abstract
Unlike classical simple random walks, one-dimensional random walks in random environments (RWRE) are known to have a wide array of potential limiting distributions. Under certain assumptions, however, it is known that CLT-like limiting distributions hold for the walk under both the quenched and averaged measures. We give upper bounds on the rates of convergence for the quenched central limit theorems for both the hitting time and position of the RWRE with polynomial rates of convergence that depend on the distribution on environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.