Abstract

A 14 T conduction-cooled superconducting magnet with a clear cold bore of 50 mm in diameter is designed and fabricated for a physical property measurement system. The magnet is built with six Nb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn coils and five NbTi coils arranged coaxially. To reliably protect the 14 T magnet, a passive quench protection scheme is developed, including a novel coil subdivision method and heater network design. The novel coil subdivision method mixes a NbTi coil and an Nb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn coil into the same subdivision to reduce the hot-spot temperature of the Nb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn coil. Different heaters parameters are compared and analyzed to obtain a lower hot-spot temperature. In addition, an efficient way of raising the ratio of copper to superconductor in the superconducting wires is used to reduce the hot-spot temperature of the Nb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn coils in the low magnetic field region. An in-house quench simulation code in MATLAB, including a finite difference method for the Nb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn coils in the low magnetic field region and a quench ellipsoid propagation model for the other coils, has been developed. This article describes the details of the passive quench protection scheme and presents the quench simulation results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call