Abstract

The quadrupole magnets for the Large Hadron Collider (LHC) upgrade to higher luminosity are jointly developed by CERN and US-LARP (LHC Accelerator Research Program). These Nb $_3$ Sn magnets will be protected against overheating after a quench by a combination of heaters bonded to the coil outer surface and coupling-loss induced quench (CLIQ) units. The first 4-m-long prototype magnet, called MQXFAP1, was tested at the Brookhaven National Laboratory in stand-alone configuration. The magnet training campaign, consisting of 18 quenches, was interrupted due to the development of a short circuit between one heater strip and the coil. During the campaign, different quench protection schemes were implemented, including heaters attached to outer and inner layers, one CLIQ unit, and the energy-extraction system. The configuration including outer-layer heaters and CLIQ achieved the fastest current discharge, hence the lowest hotspot temperature. The electro-magnetic and thermal transients after a quench were simulated with the program STEAM-LEDET and found in good agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.