Abstract
We develop an analytical approach for the study of the quench dynamics of the anisotropic Heisenberg model (XXZ model) on the infinite line. We present the exact time-dependent wave functions after a quench in an integral form for any initial state and for any anisotropy Δ by means of a generalized Yudson contour representation. We calculate the evolution of several observables from two particular initial states: starting from a local Néel state we calculate the time evolution of the antiferromagnetic order parameter-staggered magnetization; starting from a state with consecutive flipped spins (1) we calculate the evolution of the local magnetization and express it in terms of the propagation of magnons and bound state excitations, and (2) we predict the evolution of the induced spin currents. These predictions can be confronted with experiments in ultracold gases in optical lattices. We also show how the "string" solutions of Bethe ansatz equations emerge naturally from the contour approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.