Abstract

We explore the dynamics of a Bose gas following its quench to a strongly interacting regime near a Feshbach resonance. Within a self-consistent Bogoliubov analysis we find that after the initial condensate-quasiparticle Rabi oscillations, at long time scales the gas is characterized by a nonequilibrium steady-state momentum distribution function, with depletion, condensate density and contact that deviate strongly from their corresponding equilibrium values. These are in a qualitative agreement with recent experiments on Rb85 by Makotyn, et al. Our analysis also suggests that for sufficiently deep quenches close to the resonance the nonequilibrium state undergoes a phase transition to a fully depleted state, characterized by a vanishing condensate density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.