Abstract

The non-equilibrium dynamics of a one-dimensional (1D) topological system with 3rd-nearest-neighbor hopping has been investigated by analytical and numerical methods. An analytical form of topological defect density under the periodic boundary conditions (PBC) is obtained by using the Landau–Zener formula (LZF), which is consistent with the scaling of defect production provided by the Kibble–Zurek mechanism (KZM). Under the open boundary conditions (OBC), quench dynamics becomes more complicated due to edge states. The behaviors of the system quenching across different phases show that defect production no longer satisfies the KZM paradigm since complicated couplings exist under OBC. Some new dynamical features are revealed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.