Abstract

In pump-probe spectroscopies, THz pulses are used to quench a system, which is subsequently probed by either a THz or optical pulse. In contrast, third-harmonic generation experiments employ a single multicycle driving pulse and measure the induced third harmonic. In this work, we analyze a spectroscopy setup where both a quench and a drive are applied and two-dimensional spectra as a function of time and quench-drive delay are recorded. We calculate the time evolution of the nonlinear current generated in the superconductor within an Anderson-pseudospin framework and characterize all experimental signatures using a quasiequilibrium approach. We analyze the superconducting response in Fourier space with respect to both the frequencies corresponding to the real time and the quench-drive delay time. In particular, we show the presence of a transient modulation of higher harmonics, induced by a wave mixing process of the drive with the quench pulse, which probes both quasiparticle and collective excitations of the superconducting condensate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call