Abstract

A 9-tape, 14 mm wide ReBCO Roebel cable was soldered onto a U-shaped holder. The critical current, Ic, was measured at 77 K and self-field. The cryostability of the cable was studied in response to the application of local pulses of 1–14 W at several values of i = I/Ic. A detailed analysis of the cable’s cryostability was presented. With a Stekly parameter α = G/Q « 1 and a heat generation margin of ∼190 kW/m2 the present ReBCO cable was shown to be ultra cryostable with respect to internally generated transport-current overload. However, the cable was much less stable against externally and locally applied disturbances because of the tendency to initiate local film boiling. A locally applied 10 W led to a prediction of a film-boiling-cooled zone with a temperature of 181 K. However, when cold-end cooling was considered, the predicted hot spot temperature decreased to 87–115 K depending on the surface-cooling efficiency. Predictions were compared to experiment extracting a cooling efficiency parameter representing the penetration of the cryogen into the cable. Experiment showed the generation of time stable normal zones which were a function of disturbance power. This led to the description of the cable stability in terms of minimum quench power; the results are presented in stability diagrams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.