Abstract

The European high-field superconducting dipole magnet, currently under development, will create magnetic fields of up to 12.5 T for performance tests of high-current superconducting cables. To study the behavior of the dipole during a quench (the energy stored is 16 MJ at 16.5 kA) a complex simulation model was developed and integrated in the 1-D thermal hydraulic code THEA. The detailed quench analysis has shown that the dipole can be adequately protected by proper selection of the discharge time constant and the quench detection voltage for all disturbances except if the initial normal zone is 50 m, an unlikely event. In this case the peak helium pressure exceeds the limit for plastic deformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call