Abstract

We examined the dynamics of the queen replacement process in African and European colonies that did and did not produce afterswarms. In colonies without afterswarms, the queen replacement process was completed in 24–48 hours, the first-emerging virgin queen (VQ) typically inherited the natal nest even if multiple queens emerged, workers performed few vibration signals on emerged queens, and all signaling activity was directed toward early emerging VQs. In contrast, if colonies did produce afterswarms, the queen replacement process required 5–6 days, there was no advantage for first-emerging queens, vibration rates on emerged queens were 25 times greater, and signaling activity was directed toward all VQs. Although vibration signal activity was more pronounced in colonies with afterswarms, the signal was consistently associated with increased VQ survival under all conditions. These trends were exhibited similarly in the African and European colonies, suggesting that they have broad applicability to queen-replacement decisions over a range of environmental and racial conditions. However, the African and European colonies differed in the total number of queens involved in the elimination process and the relative importance of queen duels and pre-emergence destruction under the different reproductive strategies. Taken together, our results suggest that worker behavior is a major determinant for the outcome of queen replacement, either through reduced interactions that allow first-emerged queens to rapidly eliminate rivals, or through increased use of interactions such as the vibration signal, which may allow workers to influence the ultimate fate of each emerged VQ. We discuss the possibility that these behavior patterns may reflect the roles of cooperation and conflict in shaping honey bee reproductive decisions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call