Abstract

We introduce open-loop quantum control protocols for characterizing the spectral properties of non-Gaussian noise, applicable to both classical and quantum dephasing environments. By engineering a multidimensional frequency comb via repetition of suitably designed pulse sequences, the desired high-order spectra may be related to observable properties of the qubit probe. We prove that access to a high time resolution is key to achieving spectral reconstruction over an extended bandwidth, overcoming the limitations of existing schemes. Non-Gaussian spectroscopy is demonstrated for a classical noise model describing quadratic dephasing at an optimal point, as well as a quantum spin-boson model out of equilibrium. In both cases, we obtain spectral reconstructions that accurately predict the qubit dynamics in the non-Gaussian regime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call