Abstract
We study the evolution of qubit-environment entanglement, quantified using Negativity, for NV-center spin qubits interacting with an environment of $^{13}$C isotope partially polarized nuclear spins in the diamond lattice. We compare it with the evolution of the Fidelity of environmental states conditional on the pointer states of the qubit, which can serve as a tool to distinguish between entangling and non-entangling decoherence in pure-dephasing scenarios. The two quantities show remarkable agreement during the evolution in a wide range of system parameters, leading to the conclusion that the amount of entanglement generated between the qubit and the environment is proportional to the trace that the joint evolution leaves in the environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.