Abstract

Background In previous reports, Marrero-Ponce et al. proposed algebraic formalisms for characterizing topological (2D) and chiral (2.5D) molecular features through atom- and bond-based ToMoCoMD-CARDD (acronym for Topological Molecular Computational Design-Computer Aided Rational Drug Design) molecular descriptors. These MDs codify molecular information based on the bilinear, quadratic and linear algebraic forms and the graph-theoretical electronic-density and edge-adjacency matrices in order to consider atom- and bond-based relations, respectively. These MDs have been successfully applied in the screening of chemical compounds of different therapeutic applications ranging from antimalarials, antibacterials, tyrosinase inhibitors and so on. To compute these MDs, a computational program with the same name was initially developed. However, this in house software barely offered the functionalities required in contemporary molecular modeling tasks, in addition to the inherent limitations that made its usability impractical. Therefore, the present manuscript introduces the QuBiLS-MAS (acronym for Quadratic, Bilinear and N-Linear mapS based on graph-theoretic electronic-density Matrices and Atomic weightingS) software designed to compute topological (0–2.5D) molecular descriptors based on bilinear, quadratic and linear algebraic forms for atom- and bond-based relations.ResultsThe QuBiLS-MAS module was designed as standalone software, in which extensions and generalizations of the former ToMoCoMD-CARDD 2D-algebraic indices are implemented, considering the following aspects: (a) two new matrix normalization approaches based on double-stochastic and mutual probability formalisms; (b) topological constraints (cut-offs) to take into account particular inter-atomic relations; (c) six additional atomic properties to be used as weighting schemes in the calculation of the molecular vectors; (d) four new local-fragments to consider molecular regions of interest; (e) number of lone-pair electrons in chemical structure defined by diagonal coefficients in matrix representations; and (f) several aggregation operators (invariants) applied over atom/bond-level descriptors in order to compute global indices. This software permits the parallel computation of the indices, contains a batch processing module and data curation functionalities. This program was developed in Java v1.7 using the Chemistry Development Kit library (version 1.4.19). The QuBiLS-MAS software consists of two components: a desktop interface (GUI) and an API library allowing for the easy integration of the latter in chemoinformatics applications. The relevance of the novel extensions and generalizations implemented in this software is demonstrated through three studies. Firstly, a comparative Shannon’s entropy based variability study for the proposed QuBiLS-MAS and the DRAGON indices demonstrates superior performance for the former. A principal component analysis reveals that the QuBiLS-MAS approach captures chemical information orthogonal to that codified by the DRAGON descriptors. Lastly, a QSAR study for the binding affinity to the corticosteroid-binding globulin using Cramer’s steroid dataset is carried out.ConclusionsFrom these analyses, it is revealed that the QuBiLS-MAS approach for atom-pair relations yields similar-to-superior performance with regard to other QSAR methodologies reported in the literature. Therefore, the QuBiLS-MAS approach constitutes a useful tool for the diversity analysis of chemical compound datasets and high-throughput screening of structure–activity data.Graphical abstract.

Highlights

  • In previous reports, Marrero-Ponce et al proposed algebraic formalisms for characterizing topological (2D) and chiral (2.5D) molecular features through atom- and bond-based ToMoCoMD-CARDD molecular descriptors

  • The QuBiLS-MAS module was designed as standalone software, in which extensions and generalizations of the former ToMoCoMD-CARDD 2D-algebraic indices are implemented, considering the following aspects: (a) two new matrix normalization approaches based on double-stochastic and mutual probability formalisms; (b) topological con‐

  • The QuBiLS-MAS software consists of two components: a desktop interface (GUI) and an Abstract Programming Interface (API) library allowing for the easy integration of the latter in chemoinformatics applications

Read more

Summary

Introduction

Logical Molecular Computational Design-Computer Aided Rational Drug Design) molecular descriptors These MDs codify molecular information based on the bilinear, quadratic and linear algebraic forms and the graph-theoretical electronic-density and edge-adjacency matrices in order to consider atom- and bond-based relations, respectively. The ToMoCOMD-CARDD MDs have been successfully applied in the screening of chemical compounds of different therapeutic applications ranging from antimalarials [14], trichomonacidals [15, 16], antitrypanosomals [17], paramphistomicides [18], antibacterials [19], tyrosinase inhibitors [20, 21] and others [22, 23] To compute these descriptors, a computational program with the same name was developed. This software barely offered the functionalities required in contemporary molecular modeling tasks, in addition to the inherent limitations that made its usability impractical, for instance: (a) it did not support standard input formats (i.e. MDL MOL/SDF files) and the only input method for the chemical structures entailed the sketching of molecular pseudographs using a built-in manual drawing mode; (b) parameter configurations could not be exported or saved for posterior experiments; (c) no option for batch processing of descriptors was offered; (d) lacked the distributed computing functionality which permits the correct utilization of current multi-core architectures; (e) could not be used as a standalone library preventing the its integration in other applications; and (f) presented ambiguities in the labeling of the descriptors’ names in the output file

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call