Abstract

Protein nanostructures in living organisms have attracted intense interests in biology and material science owing to their intriguing abilities to harness ion transportation for matter/signal transduction and bioelectricity generation. Silk nanofibrils, serving as the fundamental building blocks for silk, not only have the advantages of natural abundance, low cost, biocompatibility, sustainability, and degradability but also play a key role in mechanical toughness and biological functions of silk fibers. Herein, cationic silk nanofibrils (SilkNFs), with an ultrathin thickness of ∼4 nm and a high aspect ratio up to 500, were successfully exfoliated from natural cocoon fibers via quaternization followed by mechanical homogenization. Being positively charged in a wide pH range of 2-12, these cationic SilkNFs could combine with different types of negatively charged biological nanofibrils to produce asymmetric ionic membranes and aerogels that have the ability to tune ion translocation. The asymmetric ionic aerogels could create an electric potential as high as 120 mV in humid ambient air, whereas asymmetric ionic membranes could be used in ionic rectification with a rectification ratio of 5.2. Therefore, this green exfoliation of cationic SilkNFs may provide a biological platform of nanomaterials for applications as diverse as ion electronics, renewable energy, and sustainable nanotechnology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call