Abstract

Quaternized chitosan (QCh) was homogeneously synthesized by reacting chitosan with 3-chloro-2-hydroxypropyltrimethylammonium chloride (CHPTAC) in alkali/urea aqueous solution for the first time. The structure and solution properties of QCh were characterized by using element analysis, FT-IR, 13C NMR, SEC-LLS, rheology, viscometer, and ξ-potential measurements. Subsequently, polyelectrolyte complex (PEC) hydrogels were constructed by in situ polymerization of acrylic acid (AA) monomers in the concentrated QCh solution. The structure and mechanical behavior of the prepared hydrogels were systematic studied. Because of the high charge density and solubility of QCh, strong electrostatic interactions were formed in the hydrogels and endowed them tough with self-recovery properties. The mechanical behavior of the hydrogels was accurately tuned from stiff and viscoelastic to soft and elastic by changing the poly(acrylic acid) (PAA) content. The regulation mechanism relied on the remarkable difference in the chai...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call