Abstract

Thiols are essential metabolites associated with redox imbalances and metabolic disorders in diseases. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) facilitates imaging of metabolites in tissue, but imaging of thiols remains challenging. Here we developed a method to visualize thiols using a stable isotope-labeled (SIL) MALDI probe, a mixture of unlabeled and deuterium-labeled reagents that provided adduct signals at [M]+ and [M + 3]+, to identify endogenous thiols in tissue. A series of MALDI probe candidates were rationally designed, and the structure-effect relationships were determined. First, the reactivity of different warheads toward the thiol group was evaluated, and maleimide was the best for in situ derivatization. Second, an acridine fragment showed the best improvement in MS responses. Third, a permanent charge was introduced for detection improvement in the positive mode. Finally, the hydrogens of methyl group were replaced by deuterium atoms, obtaining the novel SIL MALDI probe and thus facilitating significantly the annotation of thiols. The finally obtained D0/D3-9-((2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)ethyl)carbamoyl)-10-methylacridin-10-ium iodide (D0/D3-MaI-MADA) enabled direct MSI of thiols in the fine structures of human liver tumors without a reduction procedure. Our work built a SIL MALDI probe for the first time and provided a strategy for the rational design of MALDI probes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.