Abstract

The paper develops the fundamentals of quaternionic holomorphic curve theory. The holomorphic functions in this theory are conformal maps from a Riemann surface into the 4-sphere, i.e., the quaternionic projective line. Basic results such as the Riemann-Roch Theorem for quaternionic holomorphic vector bundles, the Kodaira embedding and the Pluecker relations for linear systems are proven. Interpretations of these results in terms of the differential geometry of surfaces in 3- and 4-space are hinted at throughout the paper. Applications to estimates of the Willmore functional on constant mean curvature tori, respectively energy estimates of harmonic 2-tori, and to Dirac eigenvalue estimates on Riemannian spin bundles in dimension 2 are given.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call