Abstract
A 1-factorization \({{\mathcal {F}}}\) of a complete graph \(K_{2n}\) is said to be G-regular, or regular under G, if G is an automorphism group of \({{\mathcal {F}}}\) acting sharply transitively on the vertex-set. The problem of determining which groups can realize such a situation dates back to a result by Hartman and Rosa (Eur J Comb 6:45–48, 1985) on cyclic groups and it is still open when n is even, although several classes of groups were tested in the recent past. It has been recently proved, see Rinaldi (Australas J Comb 80(2):178–196, 2021) and Mazzuoccolo et al. (Discret Math 342(4):1006–1016, 2019), that a G-regular 1-factorization, together with a complete set of rainbow spanning trees, exists for each group G of order 2n, n odd. The existence for each even \(n > 2\) was proved when either G is cyclic and n is not a power of 2, or when G is a dihedral group. Explicit constructions were given in all these cases. In this paper we extend this result and give explicit constructions when \(n > 2\) is even and G is either abelian but not cyclic, dicyclic, or a non cyclic 2-group with a cyclic subgroup of index 2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.