Abstract

A symmetry scheme based on the irreducible corepresentations of the full symmetry group of a molecular system is presented for use in relativistic calculations. Consideration of time-reversal symmetry leads to a reformulation of the Dirac–Hartree–Fock equations in terms of quaternion algebra. Further symmetry reductions due to molecular point group symmetry are then manifested by a descent to complex or real algebra. Spatial symmetry will be restricted to D2h and subgroups, and it will be demonstrated that the Frobenius–Schur test can be used to characterize these groups as a whole. The resulting symmetry scheme automatically provides maximum point group and time-reversal symmetry reduction of the computational effort, also when the Fock matrix is constructed in a scalar basis, that is, from the same type of electron repulsion integrals over symmetry-adapted scalar basis functions as in nonrelativistic theory. An illustrative numerical example is given showing symmetry reductions comparable to the nonrelativistic case.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call