Abstract

Quantum tomography for continuous variables is based on the symplectic transformation group acting in the phase space. A particular case of symplectic tomography is optical tomography related to the action of a special orthogonal group. In the tomographic description of spin states, the connection between special unitary and special orthogonal groups is used. We analyze the representation for spin tomography using the Cayley-Klein parameters and discuss an analog of symplectic tomography for discrete variables. We propose a representation for tomograms of discrete variables through quaternions and employ the qubit-state tomogram to illustrate the method elaborated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.