Abstract

We present a new polar representation of quaternions inspired by the Cayley-Dickson representation. In this new polar representation, a quaternion is represented by a pair of complex numbers as in the Cayley-Dickson form, but here these two complex numbers are a complex ‘modulus’ and a complex ‘argument’. As in the Cayley-Dickson form, the two complex numbers are in the same complex plane (using the same complex root of −1), but the complex phase is multiplied by a different complex root of −1 in the exponential function. We show how to calculate the ‘modulus’ and ‘argument’ from an arbitrary quaternion in Cartesian form.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.