Abstract

The article considers the problem of regularizing the features of the classical equations of celestial mechanics and space flight mechanics (astrodynamics), which use variables that characterize the shape and size of the instantaneous orbit (trajectory) of the moving body under study, and Euler angles that describe the orientation of the used rotating (intermediate) coordinate system or the orientation of the instantaneous orbit, or the plane of the orbit of a moving body in an inertial coordinate system. Singularity-type features (division by zero) of these classical equations are generated by Euler angles and complicate the analytical and numerical study of orbital motion problems. These singularities are effectively eliminated by using the four-dimensional Euler (Rodrigues-Hamilton) parameters and Hamiltonian rotation quaternions. In this (second) part of the work, new regular quaternion models of celestial mechanics and astrodynamics are obtained that do not have the above features and are built within the framework of a perturbed spatial limited three-body problem (for example, the Earth, the Moon (or the Sun) and a spacecraft (or an asteroid)): equations of trajectory motion written in non-holonomic or orbital or ideal coordinate systems, for the description of the rotational motion of which the Euler (Rodrigues-Hamilton) parameters and quaternions of Hamilton rotations are used. New regular quaternion equations of the perturbed spatial restricted three-body problem are also obtained, constructed using two-dimensional ideal rectangular Hansen coordinates, Euler parameters and quaternion variables, as well as using complex compositions of Hansen coordinates and Euler parameters (Cayley-Klein parameters). The advantage of the proposed orbital motion equations constructed using the Euler parameters over the equations constructed using the Euler angles is due to the well-known advantages of the quaternion kinematic equations in the Euler parameters included in the proposed equations over the kinematic equations in the Euler angles included in the classical equations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call