Abstract

The scene projector (SP) can provide simulated scene images with same optical characteristics as the real scenes to evaluate imaging systems in hard-ware-in-the-loop (HWIL) simulation testing. The single scene generation device (SGD) based SP typically projects 8-bit images at 220 fps, which is insufficient to fulfill the requirements of ultra-high frame rate imaging systems, such as star trackers and space debris detectors. In this paper, an innovative quaternary pulse width modulation (PWM) based SP is developed and implemented to realize the ultra-high frame rate projection. By optically overlapping modulation layers of two digital micro-mirror devices (DMDs) in parallel, and illuminating them with light intensities, a quaternary SGD is built up to modulate quaternary digit-planes (QDs) with four grayscale levels. And the quaternary digit-plane de-composition (QDD) is adopted to decompose an 8-bit image into 4 QDs. In addition, the exposure time of each QD is controlled by quaternary PWM, and the base time is optimized to 8 µs. The experimental results prove that the total exposure time of all QDs sequentially modulated by quaternary PWM is approximately 760 µs, namely projecting 8-bit images at 1300 fps. The quaternary PWM using two DMDs in parallel dramatically improves the grayscale modulation efficiency compared to the existing projection technologies, which provides a new approach for the SP design with ultra-high frame rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call