Abstract

The field of mineralogy represents an area of untapped potential for the synthetic chemist, as there are numerous structure types that can be utilized to form analogues of mineral structures with useful optoelectronic properties. In this work, we describe the synthesis and characterization of two novel quaternary sulfides A1+xSn2-xBi5+xS10 (A = Li+, Na+). Though not natural minerals themselves, both compounds adopt the pavonite structure, which crystallizes in the C2/m space group and consists of two connected, alternating defect rock-salt slabs of varying thicknesses to create a three-dimensional lattice. Despite their commonalities in structure, their crystallography is noticeably different, as both structures have a heavy degree of site occupancy disorder that affects the actual positions of the atoms. The differences in site occupancy alter their electronic structures, with band gap values of 0.31(2) eV and 0.07(2) eV for the lithium and sodium analogues, respectively. LiSn2Bi5S10 exhibits ultralow thermal conductivity of 0.62 W m-1 K-1 at 723 K, and this result is corroborated by phonon dispersion calculations. This structure type is a promising host candidate for future thermoelectric materials investigation, as these materials have narrow band gaps and intrinsically low thermal conductivities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.