Abstract

AbstractThe abundance and accumulation rates of siliceous microfossils in the northern South China Sea, including radiolarians, diatoms and sponge spicules, increased during most glacial intervals within the past 1100 kyr. Similar trends are observed in the index of thermocline surface radiolarians (TSR), diatom accumulation rates (DAR), charcoal accumulation rates (CAR) and the abundance of radiolarian species Cycladophora davisiana davisiana. Decreasing sea‐surface temperature accompanied by increased seasonality since 900 ka is indicated by a decline in the tropical radiolarian assemblage, including Tetrapyle octacantha and Octopyle stenozona, and by an increase in the subtropical assemblage, including Pterocorys zancleus, Peromelissa phalacra and Ommatartuts tetrathalamus tetrathalamus. Rapid increases at about 800 to 700 ka of siliceous microfossils, charcoal, subsurface and intermediate radiolarians, as well as the TSR index and the DAR, imply a fundamental shift in climate and a shoaling thermocline. Although these fundamental changes in the silicious fauna and flora of the South China Sea take place within the context of a developing 100‐kyr cycle, they do not change in step with changing sea‐level as indicated by marine δ18O. This is most clearly illustrated by the step‐like increase in silica accumulation (radiolaria, diatoms and sponge spicules) at 680 ka. Rather, these fundamental changes probably reflect intensified surface productivity associated with enhanced East Asian winter‐monsoon circulation. Copyright © 2003 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call