Abstract

The N-(2-pyridyl)-N'-ethylpiperazines are important structural motifs in several medicinally relevant compounds. Known synthetic methods toward these structures are multistep and generally based on the SNAr-chemistry; their applicability is significantly limited to substrates containing electron-withdrawing groups. Here, we describe a new methodology for a rapid and modular access to this privileged scaffold. Importantly, the developed protocol proved to be very general and efficient for the substrates containing substituents of different electronic nature. An operationally simple, metal-free, one-pot synthetic procedure involves the initial reaction of activated heterocyclic N-oxides with DABCO, followed by in situ treatment of the resultant quaternary N-(2-pyridyl)-DABCO salts with nucleophiles, resulting in ring-opening. The method features mild reaction conditions, high positional selectivity, and excellent functional-group tolerance. The utility of our approach is demonstrated by the late-stage site-selective functionalizations of complex molecules; a rapid modular assembly of MC2050, a potent PARP-1 inhibitor; and gram-scale preparations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.