Abstract
Sundaland, the inundated shelf separating Java, Sumatra and Borneo from the Malay Peninsula, is of exceptional interest to biogeographers for its species richness and its position at the junction between the Australasian and Indomalay biogeographic provinces. Owing to its low elevation and relief, its physiography is contingent on relative sea-level change, which drove Quaternary species burst in response to flooding episodes. New findings show that the region was predominantly terrestrial during the Late Pleistocene requiring a reassessment of the drivers of its recent biodiversity history. Here we show that physiographic changes have modified the regional connectivity network and remodelled the pathways of species dispersal. From combined landscape evolution and connectivity models, we found four phases of drainage reorganisation and river captures. These changes have fragmented the environment into multiple habitats connected by migratory corridors that cover 8% of the exposed shelf and stretch across the biogeographic provinces. Our results support the theory that rapidly evolving physiography could foster Quaternary biodiversification across Southeast Asia.
Highlights
Sundaland, the inundated shelf separating Java, Sumatra and Borneo from the Malay Peninsula, is of exceptional interest to biogeographers for its species richness and its position at the junction between the Australasian and Indomalay biogeographic provinces
Based on the purported Quaternary geodynamic stability of the Sunda Shelf[1,2,3,4,5], eustatic sea level fluctuations have generally been regarded as an important contributor to the recent Southeast Asia extraordinary biological diversification[6,7,8,9]
Divergence and speciation would increase during eustatic highstands and geographic dispersal during glacial sea level lowstands; this alternation would overall remodel the taxonomic composition of the regional biotas[3,10,11,12,13]
Summary
The inundated shelf separating Java, Sumatra and Borneo from the Malay Peninsula, is of exceptional interest to biogeographers for its species richness and its position at the junction between the Australasian and Indomalay biogeographic provinces. We test the role of landscape dynamic in modifying connectivity and dispersal corridors across the exposed Sunda Shelf using a series of calibrated surface evolution simulations[34] forced with eustatic, climatic and tectonic conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.