Abstract

Mapping protein interactions and their dynamics is crucial to defining physiologic states, building effective models for understanding cell function, and to allow more effective targeting of new drugs. Crosslinking studies can estimate the proximity of proteins, determine sites of protein-protein interactions, and have the potential to provide a snapshot of dynamic interactions by covalently locking them in place for analysis. Several major challenges are associated with the use of crosslinkers in mass spectrometry, particularly in complex mixtures. We describe the synthesis and characterization of a MS-cleavable crosslinker containing cyclic amines, which address some of these challenges. The DC4 crosslinker contains two intrinsic positive charges, which allow crosslinked peptides to fragment into their component peptides by collision-induced dissociation (CID) or in-source decay. Initial fragmentation events result in cleavage on either side of the positive charges so crosslinked peptides are identified as pairs of ions separated by defined masses. The structures of the component peptides can then be robustly determined by MS(3) because their fragmentation products rearrange to generate a mobile proton. The DC4 crosslinking reagent is stable to storage, highly reactive, highly soluble (1 M solutions), quite labile to CID, and MS(3) results in productive backbone fragmentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.