Abstract

Corals, coralline algae and vermetid gastropods are indirect (marine limiting) relative sea-level (RSL) indicators. The precision in sea-level reconstruction based on fossils of those organisms depends on the probable palaeodepth in which they grew. Constraining such palaeodepth depends, in turn, on the available information about the habitats of their living counterparts. Diverse genera, species and species assemblages of corals, coralline algae and vermetid gastropods have historically been proposed as reliable indicators of narrow, shallow depth ranges. However, the increased information on depth distribution of marine benthos in the last two decades has challenged some early assumptions about depth ranges of taxa considered diagnostic of precise palaeodepths. Here, the authors test the reliability of coral, coralline algal and vermetid assemblages that have been extensively used in RSL reconstructions in the light of data from Ocean Biogeographical Information System (OBIS) and other recently published data. In the Indo-Pacific province, these data support the use of the robust-branching and the shallow, high-energy encrusting coral assemblages with a 0 to 10 m uncertainty. In both cases many component species have unimodal distributions and both median and average water depths are shallower than 10 m. The reliability of these coral assemblages as indicative of shallow water depths is strengthened when corals are encrusted by thick plants of the coralline alga Porolithon gr. onkodes. According to OBIS data, coralline algae of this species group in the Indo-Pacific are restricted to very shallow waters (95% probability of occurrence shallower than 0.2 m and in 99.6% of records shallower than 6 m). However, such a narrow depth range and the overall scarce data on coralline algal species in the OBIS database are questionable due to difficulties of coralline algal species identification with the naked eye. A comprehensive survey of the modern distribution of coralline algae at One Tree Reef (southern Great Barrier Reef) indicates that P. gr. onkodes has a log-normal distribution with median depth of less than 5 m and 95% of occurrence probability of thick crusts (> 0.2 mm) shallower than 8.8 m. Data on modern distribution of vermetids are scarce. In the OBIS database, vermetid species are reported from relatively wide depth ranges. However, relatively high densities (> 10 individuals per m2) on coral and coralline algal surfaces only occur from above mean low tide to some 6 m depth. In the Western Atlantic-Caribbean province Acropora palmata is the most precise RSL marker and no additional components of fossil assemblages improve its palaeodepth information. The confident use of coralgal and vermetid assemblages as RSL indicators relies on the identification of fossil corals and coralline algae at the species or species-group level. The scarcity of available data highlights the need for further studies on distribution of coralline algal species and vermetid in modern coral reefs from a variety of oceans and reef settings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call