Abstract

In this study, novel water-soluble quaternary ammonium salts of iminofullerenes (IFQA) were synthesized by nitrene chemistry in combination with quaternization and identified as [C60(NCH2CH2NH3+·CF3COO-)4·10H2O]n by various spectroscopies. Maize and Arabidopsis seeds were used to test the bioactivity of IFQA in seed germination. Compared with the control, maize seed exposure to 50 mg/L IFQA (normal: 73.1% vs 58.7%; drought: 66.7% vs 50.0% at the second day) and Arabidopsis seed exposure to 20 mg/L IFQA (normal: 77.5% vs 58.8%; drought: 63.3% vs 36.7% at the second day) had higher germination rates and quicker germination. The results of two-dimensional gel electrophoresis combined with mass spectroscopy showed that the abundance of 21 proteins in embryo proteome of maize seeds was significantly changed (>1.5 fold). The downregulated six storage proteins and upregulated four proteins induced by IFQA for energy production and sugar metabolism indicated a faster metabolic activity of maize seed germination. The upregulated eight stress-related proteins and antioxidant enzymes suggested that the role of IFQA was to activate the metabolic processes in seed germination and also increase seed stress response. The results provide important information to understand the mechanism of seed germination enhancement by carbon nanomaterials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call