Abstract

Fourteen plant species exhibiting a wide range of salt resistance as halophytes, semi-resistant glycophytes and sensitive glycophytes, have been grown in nutrient solution culture under low and high salt conditions. Inorganic analyses and shoot sap osmotic pressure values of these plants confirm that osmotic compensation at high salt levels is largely achieved by the accumulation of Na salts. Choline was found in shoots and roots in the range 1.0-0.2 μmol g fr. wt −1 and varied little following salt stress. Trigonelline was found in some of the sensitive glycophytes and did not increase significantly in stressed plants. Betaine levels were high (10 μmol g fr. wt −1) in the shoot of the halophytes at low salt conditions, lower values (1–10 μmol g fr. wt −1) were found in the semi-resistant glycophytes and none detected in the sensitive glycophytes. In the two resistant groups betaine accumulated to higher levels following NaCl stress. Shoot betaine levels always exceeded root levels. Proline occurred in all plants and in all cases was accumulated following NaCl stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call