Abstract

Multifunctional hydrogels have been developed to meet the various requirements of wound healing. Herein, an innovative hydrogel (QCMC-HA-PEG) was formed through the Schiff base reaction, composed of quaternary ammonium-modified carboxymethyl chitosan (QCMC), hyaluronic acid (HA), and 8-arms Polyethylene Glycol aldehyde (8-ARM-PEG-CHO). The resulting hydrogels exhibited good mechanical and adhesive properties with improved antibacterial efficacy against both Gram-positive and Gram-negative bacteria compared to CMC hydrogels. QCMC-HA-PEG hydrogels demonstrated remarkable adhesive ability in lap-shear test. Furthermore, the incorporation of MnO2 nanosheets into the hydrogel significantly enhanced its reactive oxygen species (ROS) scavenging and oxygen generation capabilities. Finally, experimental results from a full-thickness skin wound model revealed that the QCMC-HA-PEG@MnO2 hydrogel promoted skin epithelization, collagen deposition, and inflammatory regulation significantly accelerated the wound healing process. Therefore, QCMC-HA-PEG@MnO2 hydrogel could be a promising wound dressing to promote wound healing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call