Abstract

This work deals with optical properties of a new organic inorganic material: 3, 3′-Diaminodiphenyl-sulfone tin chloride with the formula (C12H14N2O2S)[SnCl6]H2O abbreviated as (AMPS)[SnCl6]H2O. Single crystals of (AMPS)[SnCl6]H2O were elaborated by the solvent evaporation method and investigated by X-ray diffraction, optical absorption (OA), photoluminescence (PL) and photoluminescence excitation (PLE). The crystal structure is composed of discrete [SnCl6] anions surrounded by organic (AMPS) cations and H2O molecules. For optical investigations, thin films have been prepared by spin-coating method from the ethanol solution of the material. Photoluminescence measurements show a quasi-white light and intense emission which can be observed even with naked eye at room temperature. This emission is believed to be due to excitonic recombination involving a Förster resonance energy transfer mechanism in which (AMPS) molecule acts as a donor and [SnCl6] molecule acts as an acceptor. Moreover, the temperature dependence study of the photoluminescence in term of Varshni and Arrhenius models reveals the free character of the inorganic exciton and shows that the organic exciton is rather localized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call