Abstract

This article is concerned with the theory of quasivelocities for non-holonomic systems. The equations of non-holonomic mechanics are derived using the Lagrange–d'Alembert principle written in an arbitrary configuration-dependent frame. The article also shows how quasivelocities may be used in the formulation of non-holonomic systems with symmetry. In particular, the use of quasivelocities in the analysis of symmetry that leads to unusual momentum conservation laws is investigated, as is the applications of these conservation laws and discrete symmetries to the qualitative analysis of non-holonomic dynamics. The relationship between asymptotic dynamics and discrete symmetries of the system is also elucidated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.