Abstract
First proposed in 2013 by Yagi and Yunes, the quasi-universal \emph{I-Love-Q relations} consist of a set of relations between the moment of inertia, the spin-induced quadrupole moment and the electric quadrupolar tidal deformability of neutron stars which are independent of the Equation of State (EoS) within an accuracy of $\sim1\%$. In this work, we show that these relations hold for different Skyrme-based nuclear matter EoS and also for the star-like solutions of different Einstein-BPS-Skyrme-models, some of which do not even present a barotropic equation of state. Further, other quasi-universal relations are analyzed, and together with recent GW observations, we use them to select the generalized Skyrme model that better reproduces observations. Our results reaffirm both the universality of the \emph{I-Love-Q} relations and the suitability of generalized Skyrme models to describe nuclear matter inside neutron stars.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.