Abstract
We recall the well-known notion of the set of uniqueness for arithmetical functions, introduced by Kátai and several other mathematicians like Indlekofer, Elliot and Hoffman, independently. We define its analogue for completely additive complex-valued functions over the set of non-zero Gaussian integers with some examples. We show that the set of "Gaussian prime plus one's" along with finitely many Gaussian primes of norm up to some constant K is a set of uniqueness with respect to Gaussian integers. This is analogous to Kátai's result in the case of positive integers [I. Kátai, On sets characterizing number theoretical functions, II, Acta Arith.16 (1968) 1–14].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.