Abstract

We report the formation of a quasi-two-dimensional electron gas (2-DEG) at the interface of γ-Al2O3/TiO2-terminated SrTiO3 (STO) grown by atomic layer deposition (ALD). The ALD growth of Al2O3 on STO(001) single crystal substrates was performed at temperatures in the range of 200–345 °C. Trimethylaluminum and water were used as co-reactants. In situ reflection high energy electron diffraction, ex situ x-ray diffraction, and ex situ cross-sectional transmission electron microscopy were used to determine the crystallinity of the Al2O3 films. As-deposited Al2O3 films grown above 300 °C were crystalline with the γ-Al2O3 phase. In situ x-ray photoelectron spectroscopy was used to characterize the Al2O3/STO interface, indicating that a Ti3+ feature in the Ti 2p spectrum of STO was formed after 2–3 ALD cycles of Al2O3 at 345 °C and even after the exposure to trimethylaluminum alone at 300 and 345 °C. The interface quasi-2-DEG is metallic and exhibits mobility values of ∼4 and 3000 cm2 V−1 s−1 at room temperature and 15 K, respectively. The interfacial conductivity depended on the thickness of the Al2O3 layer. The Ti3+ signal originated from the near-interfacial region and vanished after annealing in an oxygen environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.