Abstract

Granular crystals are periodic structures of elastic beads arranged in crystal lattices. One important feature of granular crystals is that the interactions between beads can take place via noncentral contact forces, leading to the propagation of rotational and coupled rotational-translational waves. Here, we theoretically demonstrate the topological properties of these mechanical rotational waves in a granular graphene, a two-dimensional monolayer honeycomb granular crystal with Dirac dispersion at the center of the Brillouin zone. Around the Dirac point, effective spin, helicity, and effective spin-orbit coupling are illustrated in the mechanical granular system. Finally, quasitopological transport, where the rotational edge waves are nearly topologically protected, is observed on the interface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.