Abstract

The apparent exchange-dependent relaxation (AREX) analysis has been proposed as an effective means to correct T1 contribution in CEST quantification. However, it has been recognized that AREX T1 correction is not straightforward if CEST scans are not performed under the equilibrium condition. Our study aimed to test if quasi-steady-state (QUASS) reconstruction could boost the accuracy of the AREX metric under common non-equilibrium scan conditions. Numerical simulation and in vivo scans were performed to assess the AREX metric accuracy. The CEST signal was simulated under different relaxation delays, RF saturation amplitudes, and durations. The AREX was evaluated as a function of the bulk water T1 and labile proton concentration using the multiple linear regression model. AREX MRI was also assessed in brain tumor rodent models, with both apparent CEST scans and QUASS reconstruction. Simulation showed that the AREX calculation from apparent CEST scans, under non-equilibrium conditions, had significant dependence on labile proton fraction ratio, RF saturation time, and T1. In comparison, QUASS-boosted AREX depended on the labile proton fraction ratio without significant dependence on T1 and RF saturation time. Whereas the apparent (2.7 ± 0.8%) and QUASS MTR asymmetry (2.8 ± 0.8%) contrast between normal and tumor regions of interest (ROIs) were significant, the difference was small. In comparison, AREX contrast between normal and tumor ROIs calculated from the apparent CEST scan and QUASS reconstruction was 3.8 ± 1.1%/s and 4.4 ± 1.2%/s, respectively, statistically different from each other. AREX analysis benefits from the QUASS-reconstructed equilibrium CEST effect for improved T1 correction and quantitative CEST analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call