Abstract

Electrorheological (ER)and magnetorheological (MR)fluids are characterized by an increase in dynamic yield stress upon application of a magnetic field. The Bingham plastic model has proven useful in modeling flow mode dampers utilizing ER and MR fluids. However, certain MR fluids can exhibit shear thinning behavior, wherein the fluid’s apparent plastic viscosity decreases at high shear rates. The Bingham plastic model does not account for such behavior, resulting in overprediction of equivalent viscous damping. We present a Bingham biplastic model that can account for both shear thinning and shear thickening behaviors. This approach assumes a bilinear post yield viscosity, with a critical shear rate specifying the region of high shear rate flow. Furthermore, the model introduces non-dimensional terms to account for the additional parameters associated with shear thinning and thickening. A comparison is made between Bingham plastic and Bingham biplastic force responses to constant velocity input, and equivalent viscous damping is examined with respect to nondimensional parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.