Abstract

The general principles needed to compute the effect of a stationary gravitational field on the quasistationary electromagnetic phenomena in normal conductors and superconductors are formulated from general relativistic point of view. Generalization of the skin effect, that is the general relativistic modification of the penetration depth (of the time-dependent magnetic field in the conductor) due to its relativistic coupling to the gravitational field is obtained. The effect of the gravitational field on the penetration and coherence depths in superconductors is also studied. As an illustration of the foregoing general results, we discuss their application to superconducting systems in the outer core of neutron stars. The relevance of these effects to electrodynamics of magnetized neutron stars has been shown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.