Abstract
Features of rheological laws applied to solid-like granular materials are recalled and confronted to microscopic approaches via discrete numerical simulations. We give examples of model systems with very similar equilibrium stress transport properties—the much-studied force chains and force distribution—but qualitatively different strain responses to stress increments. Results on the stability of elastoplastic contact networks lead to the definition of two different rheological regimes, according to whether a macroscopic fragility property (propensity to rearrange under arbitrary small stress increments in the thermodynamic limit) applies. Possible consequences are discussed. To cite this article: J.-N. Roux, G. Combe, C. R. Physique 3 (2002) 131–140.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.