Abstract

We study quasistatic propagation of steps along a phase boundary in a two-dimensional lattice model of martensitic phase transitions. For analytical simplicity, the formulation is restricted to antiplane shear deformation of a cubic lattice with bi-stable interactions along one component of shear strain and harmonic interactions along the other. Energy landscapes connecting equilibrium configurations with periodic and non-periodic arrangements of steps are constructed, and the energy barriers separating metastable states are calculated. We show that a sequential one-by-one step propagation along a phase boundary requires smaller energy barriers than simultaneous motion of several steps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call